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EXECUTIVE SU)MARY

The Wideband Satellite data presently constitute the most extensive

collection of global intensity and phase scintille-tion data available.
The data are being used to evaluate the scintillation-induced performance

degradation in a variety of systems. For a low orbiting satellite such

as Widebsi.d, however, the structure of the scintillation data is

critically dependent on the propagation geometry. Thus, to use the

Wideband satellite data efftctively, we must have a model to separate

the purely geometrical effecte from the true source variations.

In this report we show that an. appropriately located equivalent

phase-changing screen accurately reproduces the measured phase and

intensity scintillation from individual Wideband passes. We assume that

the three-dimensional spectral density of the ionospheric irregularities

has the form C 2 . The spectral index par--ter v and the stren

of turbulence Cs are determined by using the model calculations and the

sumnary parameters that are routinely obtained from the phase scintillation
The data are beinguse toe evlatmcitlasurn-idphaedsperforalce

data by fitting n curve of the form Tf to the measured phase spectral

density function.

The measured average p index values fall in the range 2 < p < 3;

however, the data show a systematic difference between the auroral zone

and the equator. For the auroral-zone data, the p indices are generally

smaller and more variable than the p indices for the equatorial data,

which give values closer to the nominal value p - 3. Nonetheless, the

K wajalein data give somewhat smaller p values than the Ancon data.

The free paramoeters in the phase-screen model are the height of the

phase screen and the irregularity axial ratics along and transverse to

the magnetic field. We have assumed that the satellite scan velocity,

which is known, dominates the irregularity drift component. Self-

consistent fits to the measured rms phase and S4 generally require the

equivalent phase screen to be in the F region for both the auroral and

equatorial data.1



The equatorial data are consistent with rod-like irregularities with
a minimum axial ratio of 20:1. The auroral-zone data are generally
consistent with sheet-like structures aligned along L-she.ls at least for
propagation paths within the auroral oval. A detailed analysis of the
irregularity anisot~t.opy is being independently pursued by using the
Wideband spaced recieiver data.

The phasi-ar-resn formulas have been greatly simplified by taking
limits as the outer scale approaches infinity and the inner scale
approaches zero. The justification for using these approximations is
that no evidence of systematic departures from the power-law spectral
form has been found in either the Wideband data or any other reported
phase scintillation data. Thus, the cutoff scales are outside the range
of the scale sizes t:hat affect the data, and they are properly excluded
from the analysis.

We have also used the estimated turbulence levels to determine the

rms electron density perturbation that mould be measured by an in-situP&%oe. w'e have founti, for example, that significant gigahertz scintil-
lation can be account:ed for by purturbations with rms electron density
levels between 10 el/mn and 10 ej/m over a 2 00-kin propagation path.
Smaller levels discributed over a larýi;er path would, of course, produce
the sme result.
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I •ETRODUCTION

Phase changing screenb have been used to model optical and -adio-

wave scintillation phenomena throughout the development of the theory of

scintillation (Booker at al., 1950; Bramlay, 1954; Ratcliffe, 1956;

Salpeter, 1967; Cronyn, 1970; Rufenach, 1975; Rumsey, 1975; B.ckley,

1975). The phase-screen model is appealing because of ita conceptual

and •nalytical simplicity. It is often argued, however, that the phase-

screen model c&nnot accvlra'.-ey describe scintillation data because non-

negligible amplitude variations invariably develop within the scattering

medium (see for example Wernik, 1976; Crone, 1977).

While such arguments are essentually correct, one feels intuitively

that an appropriately located equivalent phase screen should accurately

reproduce the average properties of scintillations that develop both

within and beyond an extended medium. Indeed; Bramley (1977) h..

* recently demonstrated by direct computation that such an equivalent

phase screen is surprisingly accurate. For irregularities with a power-

law spectral diatribution, Bramley's calculations show that the errors

made in computing the amplitude ana phase scintillation levels by using

an equivalent phase screen amount to only a ft', percent even if the

receiver lies within, the scattering medium.

In this report we shall demonstrate that the phase-screen model

accurately reproduces both the level and the propagation geometry depan-

dence of ionospheric scintillation date obtained from the Wideband satel-

lite. Deta have been acquired from auroral zone and equatorial stations.

The auroral-zone data preseat a compliceted, rapidly changing propagation

geometry combined with extreme source varLations. The equatorial data
provided excmples of the gigahertz scin:- lation phenomena that have
recently received considerable attention (Basi, et al., 1976; Costa and

Kelley, 1976).

7



We ehall conider only weak scattering in this report. 1Tis is not

overly restrictive because saturated scintillation at L-band is observed
only occasionally. Nonetheless, even under conditions of strong scattering,

the phase-screen model remains the simplest w.ieans of obtaining flexible

yet tractable results, particularly in a power-law scattering environment

(Gochelashvili and Shishov, 1971; Taylor, 1972; and Rumsey, 1975).

Phase scintillation data are used in the model calculations

essentially to determine the rms phase le I for the phaae-changing

screen. Indeed, the potential of differential phase measurements has

been recognized for some time as an accurate means of medsuring relative

and absolute total (integrated) electron content (TEC) (Leitinger et al.,

1975).

The principle of the differential phase technique is simply that

large-scale phase variations are directly proportional to wavelength

times the TEC along the propagation path. The more rapidly changing

phase scintillations can be thought of as TEC noise. To some extent,

diffraction effects -ist ultimately upset the simple proportionality

between phase and wavelength times TEC. An important finding from the

Wideband data is that under conditions of weak scatteeina. diffraction

effects in the phase data are .'egligible to time scales substantially

shorter than the characteristic intensity fading period.

If diffraction effects were indeed important, one would expect the

phase scintillation to be sensitive to changes in Fresnel radius and thus

vary r nlinearly with wavelength. Yet, we have consistently observed a

nearly linear wavelength dependence of rms phase except under the most

severe scattering conditions (Fremouw et al., 1978). We conclude that

under conditions of weak scattering the diffruction effects in the phase

data :an be largely ignored. We shall demonstrate this in Section II by

comparing simultaneously recorded phase data at different frequencies.

A second important finding in both the Wideband data and other

differential phase measurements (Crane, 1976) is that the differential

phase spectrum admits a power-law representation with no intrinsic low-

frequency cutoff (outer scale). The range of the power-law continuum has

8



recently been discussed by Yeh and Liu (1977). The fact that we are

dealig with a power-law continuum with an inaccessible outer scale has

important consequences for data interpretation. Indeed, neither an

inner scale nor an outer-scale cutoff has been detected in any scintil-

lation data reported to date. It follows that such parameters need not

enter a properly formulated scintillation theory.

The inner-scale cutoff does not affect the amplitude or phase

scintillation data because it occurs well below the noije level. In
the Appendix we present a simple formula that allows us to correct the

intensity scintillation index S4 for noise contamination. Nc correction

is necessary for the phase data.

If the outer-scale cutoff is large compared to the Fresnel radius,

the diffraction process removes any influence that large scale structure

might have in the intensity scintillation data. In the phase data the

detrending procedure that is used to remove TEC-induced slow phase trends

dictates the low-frequency cutoff of the spectrum. Under conditions of

both weak and strong scattering, Fresnel filtering introduces an intrinsic

low-frequency cutoff in intensity scintilletion data. Thus, since the

outer scale has not been detected in phase scintillation data, it follows

a fortiori that the outer scale has no direct influence on intensity

scintillation data. We shall see in Section III that if one ttkes this

fact into account at the outset, the theory is considerably simplified.

In Section IV we apply the power-law phase-screen theory to Wideband

equatorial and auroral data. We sh,)w that whenever thL model accurately

reproduces the rms phase data, there is a set of anisotropy parameters

and an equivalent phase screen height that will accurately reproduce the

measured S4 values as long as S4 ; 0.4 For larger S4 values the weak-

scatter theory overestimates S4.

j By using the phase-screen model we can estimate the in-situ rms

electron density perturbation level that is consistent with the scintil-

lation data. In Section V -;.. show that gigahertz scintillation can be
f

easily explained with rms electron density perturbations between

10 el/m3 and 1012 el/m3 distributed over a 200-km layer.

9
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II PUSE SCINTILLATION

In this section we shall first review a general model that completely

characterizes the structure of th2 phase scintillation exclusive of

diffraction effect:s. We shall then compute the form of the one-dimensional

phase power spectrum, which can actually be measured. From the form of

the phase power spectrum we deduce the relatiooship that converts the

measured power in a given frequency interval to an electron der-ity

perturbation level in the corresponding spatial frequency regime.

We also calculate the form of the measurable rms phase and discuss

the consequences of the inaccessible outer scale wavenumber. Finally, we

present some examples that show the extent to which diffraction effects

are detectable in phase data under conditions of weak scattering.

The zeroth-order approximation to the differential phase 86 is given

by the integral along the propagation path

,6 -0 dLl - + terms that depend (I)e X ,N t( ff on Xz

where r is the classical electron radius, A is the wavelength (fX = c,

where c is the velocity of light), fr is the reference frequency, and

6Ne is the local electron density perturbatiour. For the moment, let us

A assume that fr is infinite and that z-dependent terms in Eq. (1) are

indeed negligible.

In Rino and Fremouw (1977) it is shown that the phase autocorrelation

.I function derived from Eq. (1) has the general form

2 2eI, dK
R80(n) rr2 X2 L sec 0 0 C'-tan e .K) Coa (-K 4)* -.- d (

AN s Js a2e (2)) 2

where L is the layer thickness

,S =-4 tan a kT (3)



a (4V and (coo~ sin C) .(4

The angles e and 9 are, respectively, the zenith and magnetic azimuth

angles of the propagation vector k. We note that akT lies along the

horizontal projection of k. The z axis of the reference coordinate
system is downvard-diracted and the xz plane contains the local Sao-

magnetic meridian.

We note that Eq. (2) is a fully three-dimensional characterization
.4o

of the phase structure. The tz dependence is contained in 4Os. In

Eq. (2) f'e(K,$K ) is the three-dimensional spectral-density function

(SDF) of the irregularities. In Rino and Fremouw (1977), it is shown

that for a fairly general anisotropy model, the SDF in Eq. (2) has the

form

65N ex Xy y
}•(• -an 0 • " )m "ab •N2 >Q (AK2 + BKxy + CK2 ) . (5) °'
e k

The parameters a and b are axial ratios along and transverse to the

principal irregularity axis. The coefficients A, B, and C depend on the

propagation angles relative to the principal irregularity axis (see
-•s ~Eq. (41) in lRino and Fremouv, 1977). •

The fuvction Q(q) gives the shape of the SDF. It is normalized so

Sthat q Q(q) dq/(21c) 1 1. Thus, for a power-law SDF we can take

Q~)- 3/2 2V-2
t8 r(v + 1/2)/r(v - 1)qo (6)

"; Q (q ) " + / 2"(6 )
2 2 v+ 1/2

[q• + q ]
0

If we make the definition

C 83/2 -- 0- 2"¥-
C /8A (0•.qo (v + 1/2)/r(v - 1) (7)e o

it follows that *,6Ne(KKz) - C= K( 2v+l) for K >> q . The parameter

C will be referred to as ths strength of turbulence.

4 12



Now, if we substituta Eq. (5) and Eq. (6) into Eq. (2) and ch~ax,
variables, the result is

2 2 q Jo 4qy)
R60(y) - rX 2 L sec 9 G C q dq/2 (6)

where

. .bCo ,,(-/A -•-B2/4 cos a

and y is replaced by f(e~s) where

f2 (•) •sx l~ x •Ox + x•°
f AC- B2/ A (10)

A discussion of Eq. (8) that describes its relation to the Briggs and

Parkin (1963) formulation is given in Rino and Fremouv (1977).

Ti. integral in Eq. (8) cma be evaluated giving the result

2 2 ~qo-(v-1/2) y V-1/2r XV112(y)
R8 0(y) - r2eXL sec 8 G C V-/2 (11)e s ~27c 2•'/ r(v + 1/2) ti

where KV(x) is the modified Bessel function. In an actual experiment,

we would measure a temporal autocorrelat4on of the form R68(veff 8t) whereJ2

veff [ Bvv + Av2 12)

and

v T - tan a vz (13)

Finally, v (vT,vz) is the relative scan velocity at the ionospheric

penetration point induced by both the source motion and the irregularity

drifts. The effective scan velocity parameter Veff cannot be larger than
v. However, veff can be substantially smaller than v--for example, if the
scan direction is along the principal irregularity.

13
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rAt UVL %taw ý0iii44n tbh tawpoal Power speott ft UPhse. Which tos

deifnAd by r tho ezpreission

V tC~ (f~f~t 4 6t (4

Substitutiog lvq. (11) Into 1k. (14) and evaluating t~h* inta.Fal gives

CP (f)=X~Ls~c9GC ( - -- 1. 1)
W% 2' fl(v4112)' veff [2 + (g/

Now., racalling the -Jefinition of the C5 pa~~e [Eq. (7)), we make

the analogous definition

T -r 2X 2(L see ) aC x r(vf 2v-1 (16)
e (Un) 201r(V+l/2) ef

sotat jhereier (2-1,1vff >> :2 ioe Z fZZ
comutations. wentThtteseta ne f th nedmnsoa

Phase spectrum, 2Zv' is one less than the corresponding spectral itodex of
the three-dimensional irregulJarity spectrum, 2v+l 4'see Eq. (6)'10

Equaion(16) shove that the phase scfintillation level depends criticall.y
on the ipropegation geome~try, p4ýrticularly through G and vff as well as
the relative scen velci~t~y V.

To continue, we note that a dttrending pr9cedure (essentially a

high-~pass fil~ter) must be applied to separate the slow TEC-induced trend-

like phase va~riations from the mor e rapid phas~e scintillAtions. It is

this detrending ptocedure that dictates the smallest measurable tainporal

frequency coqponetnt in (P(f)--say, f Since we have found no systeruatic

intrinsic cuztoff cutoff iu the spectr.xm, we imist conclUde that the in-

equality (2lnfc /V f ) > q 0 always holds. It follows that tke onl~y

unambiguous characterization of the phase spectrum ts in terms of the

para'mpters T and p -2v,,which are routinely measured in. the Wideband data

reduction (F'remouw et al., 1978).

49., U0, . a ~



The consequences of this fac. are iaportent, First, no absolute

value or even uppezý bound can be ssigned to the phase varf.*ce. The

measured phate variance Is reasonably well Approximated by.he fomula

• (8•> -- T Jý __ af - T f-p+L (0)-!2
(. [f2 + f2]p/2 c T(v)

From Eq. (16) and Eq. (17) f.t follows that

(8$2) = X2 (L sec 0) G voff (18)

Now, if we take the limit of Eq. (I1) as y -. 0 or integrate q.(f) over tll

frequencies, we obtain the ideal phase variance

- 2v+1
2 22 qo r(v-1/2)

(802> _~) 2X2 c8G 0 ___

':•e2 (L seL 9) G Ca 4c f(v+I/2) (19)

which is the conventional rms phase expression.

To properly interpret £oncapheirc phase scintillation data, Eq. (18)

must be used. The principal difference between Eq6. (18) and (19) ii

the dependence of the former on veff. Indeed, veUf depends critically

on altitude. Hence, the measured rms phase will also depend on altitude.

To stuumerize, an unambiguous characterization of phase scintillation

data can be obtained only in terms of the spectral strength parameter T

and the spectral index p. If we can estimate Lhe anisotropy and erift
of the ionospheric irregularities, Eq. (16) can be used to estimate the

strength of turbulence C8 which, as with T itself, is presently th! only

unambiguous average parameter that can be usee to characterize the

spectral strength of the ionospheric irregularities.

We have assuaed in this analysis that diffraction effects in the

phase data are negligible. In Fremouw et al. (197b), it is slown that

the measured rms phtse, when corrected for the finite reference fre-

quency [Eq. (11)], varies lVnearly with wavelength. We shall now show

that under conditions of weak scatter the detailed structure of the phase

itself scales with frequency as predicted by Eq. (1) to periods shorter

than one second.
15
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In Figure I we shov a typical MH phase jxcjatjý.1ation record. The

raw phase data haey been detrended to remov phase variations with period&

greater than 10 a -0.1 Hz).. Before 0920 '..T the 84 cnilto

I Index is less theon 0.4. In Figure 2 we show on an expzanded scale the

Viiifferenvces betveaA the phase at the indicated lover frequencies and the

scaled phase at the itidicated higher frequencies. The designationsn UL3

and UU3 denote., respectively., the lowest and highest of seven equispaced

UELF frequencies. one can see that prior to 0920 UiT the large-scale phase

variations are completely suppressed., and therefore unaffected by dif-

fraction.

2vf

04 4 AiwAnAAj_.

~i8 C~i~ TIME, UT ~ 2

C4-6434-1 1

FIGMIJE I SEG'MENT OF DETRGNDED PHASE DATA (ft, 0.1 Hz.) FROM
WIDBAN PAS 633 ECODEDAT POKER FLAT, ALASKA

To demiustrate th-!s qu~antitatively., in Figure 3 we show the VHF

Al Iphase spectrumi and the specrrum of the V9F-UU3 phase difference. Below

I H threis esaentially' 20 dB of canicellation. Beyon4 30 Hz, the phase

differencq spectrumi is -~3 dB above the VMF phase spectrum indicating

totl ecorrelation. We see that the diffraction effects are largely

confined to frequenciEcs greater than 1 Hz. However, the dominant

I spectral content comes from frequencies below I Hz, which explains why

the rms phase follows the linear wavelength dependence so accurately.

9' 16
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(s) VHF-UU$ 44fe 30 Wk )

-. /2

IA

5 0

w/ b) UL3-UU3 14f .68l W42)

.3

-r/2

0g18 0919g 0920
TIME, UT

C4-6434-2

FIGURE 2 DIFFERENCE BETWEEN MEASURED PHASE AT LOW FREQUENCY AND SCALED
PHASE FROM HIGHER FREQUENCY FOR SEGMENT OF POKER FLAT PASS 6-3M
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f4

PHAN DIFFERENCE 2

0 de

VHF PHASE

0.1 1.0 10

FREOUfJNCY - Hz

FIGURE 3 SPECTRAL DENSITY OF VHF PHi.3E AND VHF-UU3 PHASE DIFFERENCE
FOR 20-s DATA RECORD FROM POKER FLAT PASS 6-36 AT ABOUT
0919 UT

We also conclude from Figure 3 that errors in T due to diffraction,

which act to flatten the spectrum, are less severe than the corresponding

errors in p. Strong scatter effects, "which are evident in Figure 2(a)

after 0920 UT, also generate mainly high-frequency components. Ultimately,

strong-scatter effects will drive the phase spectrum toward f- 2 . By

careful processing and data interpretation, we can usually rocognize and

avoid erroneous T and p values.

18
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III INTENSITY SCINTILLATION

In this section we shall develop the form of the 84 scintillation

index in the limt of an infinitely large outer-scale cutoff. dAis

limit is well defined because Yresnel filtering sappresses the coutri-

button of large-scale components. The results take a fairly simple

analytic form that properly accounts for the propagation-angle dependence

of the scintillation. In Rufenach'a (1975) foruilas, which retain &n

explicit dependence on the outer scale, the anglc dependence is introduced

in an ad hoc manner.

We shall characterize the amplitude scintillation by the second-

order mcmnts of intensity. However, under the assumd weak-scatter

conditions, the amplitude and log-amplitude are simply related. For

example, the scintillation index S4, which is the normalized rms intensity,

is twice the rms amplitude index. The intensity autocorrelation function

corresponding to Eq. (2) is

R *) L4re XL sec J eN, -tan • K)

x sin2 (h(')Z)cos (' • ) d2 (20)

(2 0)

where

h() =K2 .tan 2 e IC)2  (21)

and

Z .a ..e (22)

The aquare of the S4 scintillation index is derived from Eq. (20)
by letting 4s - 0. If we substitute Uqa. (5) and (6) into Eq. (20),

use Eq. (7), and ;hen change variables, we obtain the simpler expression

19





"NOV, IinseJparGI4s uc .h that after a ,, 465 O nod'lllais

( dq .(27)

The integral over q is wall knoin for scattering by ieotvopic •"gu-

larLties. The integral over 0 properly accounts for the geometrical
effects of anisotropic irresularitie*, In contraet, Rufenach (1975)
introduced an ad hoc multiplicativ geometrical factor to accunt for

anisotropic irregularities. By evaluating the integral over q And

substituting sq. (27) into Eq. (24) we have

2 2 2e-1/2 2S4 4) X (LL sec 0) - 2v)/ 2 " : (28)"

a(v+l A -2c

The integral in Eq. (29) can be evaluated in terms of the hyper-

geometrical function 2F(at, 0; V; z) (see Gradshteyn and Ryzhik, 1965;

Formula 3.681). To avoid convergence problems when AO >> CO, however,

we have applied the transformation

2 FI(a',•;Vz) - (1-z) 2 Fl(v-ot, V-., v; V . . (30)

Making the appropriate substitutions, J can be evaluated as

#V F 1/2 - ,1/2, 1 "; (31)
Vfr C• 2F1( A

lim
Now, z-l 2 F1 (1/2 - v, 1/2, 1; z) - r(v)/[jrt r(\. + 1/2)]. By direct

computation from Eq. (27) when a >> 1, it can be sibown that this limit

is correct,
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To stumarisa, Rqs. (26), (28), aud (31) cm be used to evaluate the

scintillation index under condit.ons of weak scattering in terms of G'
V, Z, and the propagation geometry. We note that the wavelength depen-

dence of S, implied by Eq. (28) is S4 = S . Thus, if v - 1.5,

which corresponds to P (f) c -3, S4 f ,1.5 the uomuinal wavelength

dependence typically reported for ionospheric data.

By using Eq. (16), we can write Eq. (28) in the equivalent form

2 v-1/2  (2v-1)

IS 4TZ C(O) (J/lr) Vff (32)

where

cos (•i(l-2V)/41 r(v+1/2) (2,)2V

C() ,) 2 2- 2 (33)

If we note that the units of T are radians squared per hertz raised to I
the 2V + 1 power, it is easily verified that Eq. (32) is dimensiona!,y

consistent. We also see from Eq. (32) that for a flixed rms phase level,

S4 varies inversely with Veff, which increases with increasing height.
Thus, while the factor Z-1/2 acts to increase S4 with increasing height,

the decreasing factor v (21) dominates and S4 actually decreases.

As we shall see, this effect is important in interpreting the Wideband

satellite data.

S121
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IV APPLICATION TO WIDEBAND SATELLITE DATA

A. General

We shall now apply the phase-screen model to the interpretation of

Wideband satellite data. As discussed in Fremouw et al. (1978), we

routinely measure the phase SDF at VHF (137 MHz) and UHF (378.6 MHz).

The spectral estimates are smoothed, after which a log-linear least-

squares fit is applied to determine the spectral strength parameter T and

the spectral index p. Thus, o(f) Tfl over the significant portion of

the phase SDF. The frequency limits for the fit are carefully chosen to

minimize Poise contamination and detrend filter effects.

We shall first apply Eq. (17) to compare the calculated and measured

rms phase. If the two results agree, we can be confident that the phase

SDF is indeed accurately modeled by the power-law form. Thus, this first

* step is mainly a consistency check for the basic parameters T and p.

The next step is to apply Eq. (32) to compute S4 for comparison with

its measured value. To evaluate Eq. (32), however, we must specify the

"height of the phase screen, z, the relative scan velocity, v, and the

anisotropy parameters a, b, 6, where a is the axial r&tio along the

magnetic field, b is the axial ratio transverse to the magnetic field,

and 6 is the orientation of the transverse axis such that 6 = 0 for

geomagnetic east-west sheets (see Rino and Fremouw, 1.977).

In our routine summary analysis we calculate the satellite component

of the relative scan velocity and the propagation angles at two reference

altLtudes--namely, 110 km and 350 km. Thus, if the satellite component
dominates the irregularity drifts we can compute S at E- and F-region

4
altitudes for different anisotropy parameters. When we achieve a good

fit to the data, we can remove the geometrical factors in Eq. (16) to

estimate the strength of turbulence times the layer thickness LCs.

9! 23



,I
Becrouce we have no direct mmans of determining the effective layer

thickness, LC5 is the most basic measure of the irregularity strength.

For display purposes, however, we shall specify a representative layer

thickness from which an actual value for C8 can be obtained. The inter-

pretation of C5 will be discussed in Section V.
s

B. Equatorial

Before considering individual passes, it is useful to look at the

average behavior of the spectral index p. As we noted in Section II,

the measured value of p is sensitive to noise contaumiuation under i
conditions of weak scattering and to diffraction effects under conditions

of strong scattering. To demonstrate these effects, we have plotted

the average value of p versus S4 for a representative set of passes.

The Ancon data are shown in Figure 4. The measured p index achieves
I

a maximum value near but slightly less than 3 for S4 values between 0.4

and 0.6. Noise contamination end diffraction effects cause the respective

reductions of the measured p values f-r weak (S 4 < 0.4. and strong

(S4 > 0.6) fading levels. The wavel•ngth dependence of S4 under conditions

of week scattering 'provides an indepen~dent means of verifying the value

of p.

M 4

- VHF

3 - UHF

w -

I I I I I *
0.2 0.4 0.6• 0.8 1.0 1.2 1.4

S4

C4-6434-4

FIGURE 4 AVERAGE VALUE OF p FOR S4 VALUES WITHIN THE I
INTERVALS 0.2 n 4 S4 < 0.2 (n -, 1) AS DERIVED FROM
ANCON DATA. The UHF and VHF curves are computed
separately.
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In Figure 5 we show a scatter diagram of Ancon S4 values measured

at VHF and UHF. The paucity of data between 84 - 0.2 and S4 - 0.5 is

due to the tendency of the equatorial VHF scintillation to be either

weak or strong (Livirgston, 1978). In any case, the X1.5 curve, which

corresponds to p - 3, fits the data quite well. The fit is more striking

in Figure 6, where we have plotted S4 at UHF against S4 at L band.

1.2 -

1.0- - .

40 so*

.to
O -- e

U- 00

> 0.6
OO0 0 .0

0.4,2 :

'0.2 0.4 0.6 0.8 1.0 1.2

S4 UHF
C4-6434-5

FIGURE 5 SCATTER DIAGRAM OF S4 AT VHF vs S4 AT UHF FOR
A SUBSET OF THE ANCON PASSES USED IN GENERATING
THE CUHVES IN FIGURE 4

The average p values for the Kwajalein data show behavior similar to

to that of the Ancon data (see Figure 7). However, the maximum average

p value falls distinctly below p = 3. The corresponding shallower wave-

length dependence nf S4 is consistent with a smaller p index as shown in

Figures 8 and 9 where we have plotted the S4 scatter diagrems for V!F

versus UHF, and UHF verous L band. Thus, it appears that the phase spectra

obtained from the Kwajalein data are syetematically flatter than the phase

spectr&. obtained frow the Ancon data.

25
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C4-6434-8

FIGURE 6 SCATTER DIAGRAM OF S4 AT UHF vs S4 AT L-BAND
FOR A SUBSET OF THE ANCON PASSES JSED IN
GENERATING THE CURVES IN FIGURE 4

In both the Ancon data (Figures 5 and 6) and the Kwajalein data

[• .. (Figures 8 and 9) saturation of the intensity scintillation apparently

Soccurs for an S4 value less than unity. (Qn S4 value of unity corres-

ponds to Rayleigh fading.) This effect is due to our detrending operation,

which is applied 3eparately to intensity and phase. The strong fading

data from the equatorial stations evideutly contained significant Fourier

components beyond the 10 s cutoff of the detrend filter. This will not

be a problem for our analysis here because we are considering only weak-

scatter data in this report.

"In Figure 10 we show the phase and intensity scintillation data for

a dicturbed nighttime Ancon Wideband pass together with a set of theoret-

ical calculations of S4 and ao. Consider first the rms phase. We see

that v - 1.3 gives as good a fit to the data as the v = 1.5 curve, which
-3"corresponds to an f phase SDF. As we have already noted, diffraction

26
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0 02 0.4 01 0.8 . .2 1.4 1

S4

FIGURE 7 AVERAGE VALUES OF p FOR S4 VALUES WITHIN THE INTERVALS A
0.2 n S $4 < 0.2(n + 1) AS DERIVED FROM KWAJALEIN DATA

effects cause a flattening of the phase SDF, which explains the dis-

crepancy between the measured and calculated rms phase after - 0345 UT.

The F-region S4 curve in Flaure 10 for V - 1.3 cozes clooer to the

measured S4 curve than the co-rresponding v - 1.5 curve. However, in

the regime where S4 is small and we expect the weak-scatter theory to be

applicable, the theoretical curve gives a result that is consistently too

large. As we noted at the end of Section III, however, raising the

equivalent phaae screen heighc lowers S4 for a specified ros phase lev-! .

lhus, we believe that the 5 discrepancy in Figrire 10 is due to

the 350-km reference altitude being too low. Unfortunately, the prvpa-

gation angles are only computed for tw heights. Nonetheless, in
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Figure 10 we show the calculations for the E-region reference altitude.

Again, the large S4 estimates for the E-region are due to the smaller scan

velocities [see Eq. (32)]. Finally, the large overestimates of S4 when

S4 is greater than - 0.4 are due to the fact that the weak-scatter theory

does not allow for multiple scattering.

To illustrate the axial-ratio dependence of S4 we have used the

geometry for Ancon Pass 29-7, but have assigned a fixed value to C5.

The corresponding S4 values for isotropic irregularities and axial

ratios of 5:1 and 100:1 are shown in Figure 11. Both the variation of

S4 with changing propagation geometry and the magnitude of S4 decrease

with ir,•reasing axial ratio until the axial ratio exceeds 10:1. Beyond
10:1, the S4 index for the equatorial geometry does not exhibit an axial

ratio dependence. The diffraction is then effectively two-dimensional,

as discussd in Section III.

To complete the equatorial examples from Ancon, we have selected

three additional passes and applied the nominal F-region geometry with

Sm 1.4 and a 100:1 axial ratio. The results are shown in Figures 12,

13, and 14. In Figure 12, the calculated S4 values fall slightly below

the measured values. For such low S4 values, noise contamination is a

possible e:nplanatica (see Appendix). However, increasing the v value
and/or lowering the reference altitude will tend to increase the mude1

values as we have noted.>ii In Figure 13, the measured S4 values are significantly larger than
,•:~ toue over-ae otd

those shown in Figu-e 12. Thus, we expect the model calculations •o over.

estimate S4 . There is a gener, 1 tendency for the measured phase to fall

below the theoretical curve, which is evidently the diffraction effect

we have already noted. Nonetheless, the Ca values should be roughly

correct, and indicative of the turbulence levels required to produce

significant gigahertz scintillation. The data set shown in Figure 14

falls between the extremes shown in Figure 12 and 13. The overall fit

in Figure 14 is quite good.

Turning now to the Kwajalein data, in Figure 15 we show a typical

disturbed nighttime pass. The rms phase calculations for v - 1.25 clearly

31
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fit the rms phase data better than the calculations using V - 1.5. As with A

the Ancon data, however, there is a tendency for the F-region S4 ourve to

slightly overestimate the data which we have attributed to increased

layer height. Thi,s, the only systematic difference between the Ancon

and KwaJalein data that can be ascertained from the first-order moments

is the lower phase spectral index--p - 2.5 for Kwajalein versus p •- 2.8

for Ancon. This difference implies somewhat sharper phase gradients in

the Kwajalein data than in the Ancon data.

As a final comment on the equator date, we have not made direct

computations at L-band because the L-band phast data are not routinely

Fourier analyzed. On the other hand, we have verified the wavelength

dependence of S4 between UHF and L-band in Figures 6 and 9. Moreover,

even if UHF is near saturation, the phase scintillation and/or T can be

frequency scc.led with a high degree of accuracy. Thus, the self-

consistent intensity and phase calculations at UHF can be accurately

extrapolated to L-band. An example is presented in Section V.

C. Auroral

The interpretation of the auroral-zone data is complicated by the

rapidly changing propagation geometry. Moreover, auroral-zone scintil-

lations are typically associated with extreme variations in perturbation

strength, albeit at substantially smaller levels than the equatorial

data. As with the equator data, we begin by considering the general

behavior of the spectral index.

A plot of p versus S4 for a representative sampling of Poker Flat
passes is shown in Figure 16. Here the average spectral index obtained

from the VHF phase spectra is less than 2.5. A set of dist7irbed passes

were used to obtain the UHF values, which tend to give a slightly larger

p index. Thus, there may be a systematic steepening of the auroral phase

spectra with increasing perturbation strength, or associated with those

events that produce significant UHF scintillation.

In ganeral, it appears that the auroral data tend to show even 4
steeper phase gradients than the equatorial data from Kwajalein.
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sentative Poker Flat passes. The UHF data are I'

derived from four disturbed Poker Flat passes.

However, the auroral data hive shown considerably more variability in

the measured p index and the overall structurr Gf the scintillation.

This is evident in the scatter diagram of S4 values at UHF versus S4

values at VHF shown in Figure 17. The X1 .25 curve corresponds to a p

index value of 2, which is more typical of reported in-situ measurements

than phase scintillation measurements.

As a fitst detailed e-ample of a'iroral-zone data, we have selected

a nearly overhead pass with an isolated scintillation enhancement near

,ný!'•i'• the point oL closest approach to the magnetic zenith. Such events are

couumonly observed under conditions of moderate auroral activity. The

pattern of these events in passes to the east and west of the station is

such that they tend to occur where the propagation path lies within the

local L-shell. Thus, we have hypothesized a sheet-like anisotropy for

the irregularities.

In Figure 18 we show the data and theoretical calculations. for east-

west-aligned sheets with a - b - 10 (10:10:1 notationally) at E- and F-

region reference altitudes. The rms phase calculation using v - 1.25

fits the data very well excepc near the localized enhancement. Here the
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El' phase SDF steepens such that p - 3. We believe this effect is due to the

nonstationarity iaduced by the rapidly changing propagation geometry.

Indeed, a purely geometrical effect should produce no change in the

spectral shape.

The E-region and F-region S4 curvyc, for 10:10:1 sheets tend to

bracket the data near the enhanccmsnt. Hernce, if the 10:10:1 sheet model

is correct, the equivalent phase screen must be placed between the E-

and F-region reference altitudes. We note, however, that both calculations

underestimate the measured S4 values at the extremes of the pass. Rod-

like irregularities, how-.ver, fit the data quite well.
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We have hypothesized that the sheet-like structures, which are

independently verified by analysis of the Wideband spaced-receiver data

(Rino and Livingston, 1978), are confined to the region of the diffuse

(continuous) and discrete aurora. Outside these precipitation regions,

the irregularity structures are more nearly rod-like. To illustrate this

possibiV.ty, we also show the theoretical curve for 8:4:1 sheet& in

Figure 18. The 8:4:1 curve underestimates the enhancement, but fits the

extremes quite well.

Now, it has been noted from the earliest Wideband data (Fremouw et

41., 197PN that the auroral-zone data show a large number of events in

which the phase scintillation level is much larger then the corresponding

intensity scintillation level, even though the latter remains in the

w a weak-scatter regime. The geometrical enhancement produces such an effect.

The rms-phase-to-S4 ratio at the rms phase peak for the data in Figure 18

approaches 4.0. We shall see, however, that there are other events that

produce large rum phase enhancements without a proportionate enhancement

n S4 In Figure 19 we show an exaeple of a disturbed low-elevation pass.

The rms phase data fit the V = 1.25 curve better than the v = 1.5 curve.

Near 0912 UT, diffraction effects tend to reduce the measured rms phase

below the predicted value just as in the equator data. The predicted SAt

values for the F-regio. 10:10:1 sheet model. fit the measured data very

-~ well In the region between 0909 UT and 0911 UT. Before 0909, however,

the theoretical F-region calculations underestimate the measured values

of S and the E-region calculations give a better fit. For completeness,
we also show the v = 1.5 F-region curve, which clearly giveo a poorer fit

to the measured S4 curve as well as to the rms phase data.

The change in structure that occurs at 0909 U'I is evidently due to

an increase in height of the corresponding irregularities. Recall that

for a given phase scintillation level, the self-consistent S4 value
)• decreases with increasing height, and vice verse. This implies that

increasing the layer height tends to enhance the ratio of phase to

amplitude scintillation. Unlike the geometrical enhancement, however, a
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change in irregularity heipht would produce a roughly equivalent increase

in the equatorial and atiroral date. We noted one such event in Figure 10.

In Figure 20 we shov xnother example of a htS1,-elevation pass, but

with a strong perturbation present. With the exception of the regions

of large S4 values, the F-region calculations with v - 1.25 and v - 1.5

fit the data reasonably well. However, between 1052 and 1054 UT the

v - 1.25 curve underestimates the rms phase while the V - 1.5 cur'-'e cver-

estimates the rms phase. Allowing for diffraction effects, therc is

evidence here of a systematic change in the phase spectrum within the

passI

In Figure 21 we show a more severe e'.ample of such an effect. We

see that the rme phase enhancements are badly underestimated by the

theoretical calculations, particularly between 0948 UT aud 0952 UT. We
believe that this is due to rapidly changing perturbation structures
that do Dot readily admit a homogeneous spectral representation, rather

than to some fundamental change in irregularity development leading a

non-power-law spectral distribution. Either way, the effect is to produce

large phase excursions without a proportionate increase in S4.

Such events are not uncommon in the auroral data. However, while

they are not properly characterize! using signal moments calculated

under the weak-scatter theory, the measured anisotropy and relative

pattern drifts obtained from the spaced recAiver data are well behaved

(see Rino and livingston, 1978). It is from such an analysis that the

E-:egio, model %ith a - 8 and b 4 ir Figure 21 was deduced. It is

interesting that in spite of the poor fit to the rms phase data, the

E-region model calculations fit the S4 data reasonably well.

To summarize the auroral data, we have shown that as long as the

rms phase data fit the power-law model and S4 is less than 0.4, the

weak-scajter pojer-iaw phase-screen nmdel gives self-consistent results) for rms phase and intensity with an appropriate choice of irregularity

(phase-screen) height end irregularity anisotropy. lndeed, the model is

particularly sensitive to irregularity height and detailed anisotropy,

4,4
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FIGURE 20 VHF DATA FROM POKER FLAT PASS 6-15 SHOWING EVIDENCE OF
CHANGE IN PHASE SPECTRA
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We have taken F-region irregularities with a 10:1011 sheet-like

anisotropy as representative of auroral-xone irregularities. However,

we have not attempted to demonstrate unequivocally here that the sheet

model, as opposed to a simple rod-like anisotrop;., is correct. A

separate report will address the irregul&rity anisotr'opy tu detail. A

poini. to be made here, however, is that wherever a localied geometrical

enhaucament occurs, the rms phase increases move rapidly than the increase

in S4 .

We have also shown non-geometry-associated events that produce

large rms phase enhancements without a proportionate 84 increase. Such
events show pronounced departures from the simple power-law model we

have employed in our analysis. Hence, the theory is inappropriate in

such cases. We beli,'ve that such events are representative of tundeveloped

turbulence. A smooth a-.oral arc is representative of a structure that

can produce large localized phase enhancements without a proportionate

increase in S4. It is clear that such structures are not appropriately

characterized by second-order womenkts.
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V DISCUSSIONQ

In this report we have first developed rwi phase and 94 formulas

based on a power-law-phase-screen model with an arbitrarily large outlir-I
scal~e cutoff, The formulas allow fully for the angl, dependence of the
signal moments in a highly anisotropic mned1jm. We have shown that t!'e
power-lav-phase-scteen model gives-an accurate self-consistent description
of the phase and intensity scintillation under conditioub of weak

The height of the equivalent phaae screen and the anisotropy of the

irregularity are the only free parameters in the theory. We have found
that the parameter sensitivity of the model is such Lnat ru.'.onable
bounds can be put on the height and anisotropy. We L~ave not, however,
tried to carefully determine the morphology of the irregularity height
here because this can be better accomplished by ý.isitlg the interferometer
data. That analysis is being reported separately (Rino and Livingston,
1978).

Our main purpose in presenting the analysis in this report is to
demonstrat~e the adequacy of the phase-screen model for translating the
routinely measured Wideband sur1marj )arameters to invariant irregularity
strength measures, Such trausli~tions are necessary, for example,, to
predict phase perttnvbation levels that might adversely affect *dvanced
surveillmenc'- 4atellite systems. They also enable us to predict intensity
scintillation, particularly the equatorial. girahartz scintillation th~at
can adversely affect satellite communication syscem.,.

To demonstrate how the model can be used., let us consider a phase
screen at. 350 kmi with a signal source at three times this height ditrectly
overhead at the geomagnetic equator. Wie can then use Eq. (27) to predict
84 as a function of C so Since we have used 200 km for the layer thickness
in derivi~nX repreuentat~Jve C. values from our data, we shall also apply
that value bere. For Illustrative purposes, we have used Isotropic
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irregularities and 100:1 rods. Xhus, t.n Figure 22(a) we have, olotted
* S4 curves at 1 GCH versus C for v - 1.25 and the correspinding rurves

in Figure 22(b) for v - 1.5, We see that Ca levels approaching 10 22

correspond to significant levels of giSahertz scintillation.

Our entire analysis is based on th4 assumption that the three-
dimensional irregularity SDF has the form C /[q + q2 The
corresponding spatial correlation function has the form

Cs 2q- -v+l
R y 3/2 ( + 1, 1 (qy) (34)

Z'e 4 r (v +1/2)

It is easily shown that (6 2 as determined by evaluating yn R (y)

is consistent with Eq. (7).

Now, if an in-situ probe scans the medium, the spectral density
function that characterizes the probe output is obtained by Fourier
transforming Eq. (34) with y replaced by v 8t, where v1 is the effective
probft velocity analogous to Eq. (i2). 1he resulting SDF Is

)(f C 9 r(v-l/2) 1(5cP(f 2 2 2 V-1/2 (541c P(v+I/2) vI[qo + (21cf/vI)2I

When 2vf/vI >> q , CP_(f) i T f 2 V-. Thus, if J - 1.5, the in-sitv SDF

varies as f- 2.

To determine Ca from (p(f), one must know the anisotropy of the
irregularities and the probe velocity. Moreover, the rms electron
density is subject to the same ambiguity as the r,,s phase. However, if
we assume that q 0 21r/lo, where A 0 is the effective length of data
int:erval used in estimating tp(f), then Eq. (7) can be used to get some
idea of the actual density perturbation levels involved.

In Figure 23 we show the rms electron density versus Cs for data
inte~rvals varying logaritbically -from 1.km to 1000 km. We, see that
eveu for the 200-1m layet we used for reference, the corresponding
gigahrtz Cs level of 1022 gives rise to rms electron density excurs.ons

t• 4 811
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of less thin 10 2 61/ ovet 1 to 1000 In data intervals. Significmatly

smallr values result if the irregularities we extended over a larger

region. Thus, s £find so Inconsistemy betwe•o our scintillation

obstrvations and reported in-situ sssuramnts.

i
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Appendix:NOISE C0rRECT IONS FOR MEASURED S4 SCINTILLATION INDEX VALUES

If we apply the conventional model of a singal plus independent
additive white Gaussian noise, it is easily shown that the measured
scintillation index &4 has the form

2 -l -2 1/2 -
2 1 -2 112

K4 = (s 4 + 2SNR- + SNR ) /(l + SNR' (A-i)

Vaere SNX denotes the power signal-to-noise ratio. It is interesting
to note ,at it S4  1, then I = 1 irrespective of SNR.

In geneiral, however.,, the noise contribution causes §4 to be larger
than S1 . In Figure A-I we have plotted the measured scintillation :lndsc

4-4
against S4 for d .fferent MNRs. It can be seen that A.'cn S4 < 0.1 with
SNRa less than 30 dB, a noise correction must be applied. For the
Wideband satellite data, the SNR is typically better than 30 dB.
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